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The Matérn kernel is one of the most widely used covariance kernels in Gaussian process modeling; however,
large-scale computations have long been limited by the expensive dense covariance matrix calculations. As
a sequel of our recent paper [Chen et al. 2012] that designed a tree code algorithm for efficiently performing
the matrix-vector multiplications with the Matérn kernel, this paper documents the parallel design and the
software implementation of the algorithm. The parallelization focuses on data and work load balancing and
uses MPI passive one-sided protocols for communications. The software, implemented in C++, provides a
flexible interface with rich functionality, together with examples to demonstrate the extraction of perfor-
mance diagnostics. The code is intended to be used as building blocks for statistical calculations where the
matrix-vector multiplication is among the most expensive computational components.
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1. INTRODUCTION
The Matérn kernel is one of the most widely used positive-definite covariance kernel
in statistical analysis of spatiotemporal data [Stein 1999; Chilès and Delfiner 1999;
Wendland 2005; Rasmussen and Williams 2006]. It consists of a family of Matérn
functions of arbitrary positive orders ν, including as special cases the exponential func-
tion (when ν = 1/2) and the double exponential function, that is, the Gaussian (when
ν =∞). The flexibility in capturing the local smoothness of the data with a suitable or-
der ν contributes to its popularity in various statistical modeling scenarios [Chilès and
Delfiner 1999; Wendland 2005]. Associated with the Matérn kernel is a covariance ma-
trix of size n×n for a set of n points, for each of which a random variable is defined. The
covariance matrix is central in the analysis of Gaussian processes, the topics of which
include sampling, regression, classification, and model selection, whereby the compu-
tation of the matrix-vector product is a common subroutine. Examples of the use of the
Matérn matrix-vector product include solving a linear system by using an iterative
method [Anitescu et al. 2012] and approximating the matrix square-root function by a
least-squares polynomial [Chen et al. 2011].

A fast summation algorithm for computing the Matérn matrix-vector product for a
scattered set of points was recently developed by Chen et al. [2012]. This was the first
fast summation algorithm dedicated to the Matérn kernel of a general order ν (for an
earlier algorithm that handles specifically ν = 1.5, see Anitescu et al. [2012]; and for a
software implementation that may be extended to handle the Matérn kernel because
of its kernel-independent feature, see Ying et al. [2003]). Our algorithm follows the
tree-code framework and entails an empirically O(n log n) computational cost, which
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is asymptotically lower than the O(n2) cost as required by a straightforward matrix-
vector multiplication. The algorithm addresses various practical needs by adopting
several unconventional designs, including a balanced partitioning of the point set ac-
cording to principal component analysis, a double expansion of the kernel for reduc-
ing the storage of intermediate results, an error-estimate strategy based on sampling
and fitting, and a precomputation stage for handling multiple vectors. Furthermore,
the algorithm can easily extend to the calculations for the differentiated kernels, that
is, the partial derivatives of the kernel with respect to parameters, when the kernel
is parameterized. Parameterized kernels typically appear in the maximum likelihood
methodology for model selection. Of particular interest are the parameters that intro-
duce anisotropy to the kernel by scaling each coordinate of the space [Anitescu et al.
2012; Stein et al. 2013].

As a sequel of the work of Chen et al. [2012], this paper documents the engineering
of a parallel implementation of the algorithm. The program is intended to be used as
a software library on top of which statistical computing codes are built. Of particular
emphases are the following:

— Parallelization strategy that handles data and work load balancing and the implied
communication protocol used in a distributed-memory environment (Section 3),

— Interface design that addresses both flexibility and functionality expressiveness (Sec-
tion 4),

— Novel data structure for storing and retrieving data with d indices where the index
sum is bounded, as required by the storage of multidimensional Taylor coefficients
(Section 5).

We report several performance results (Section 6) of the code running on a medium-
sized parallel computing cluster, with the largest experiment involving 1, 024 MPI pro-
cesses. The computing cluster was built with several hundred 16-core nodes intercon-
nected by QDR InfiniBand1 and with the MVAPICH2 compiler2 support. Thus, the best
performance of the code was obtained by enabling asynchronous progress and by run-
ning every MPI process with two cores, one of which is dedicated to the MPI passive
one-sided communications. Because of the ongoing development of the MPI standard
and implementations and hardware features, it is unclear at present whether, and if
so, how, the aforementioned restrictions on the complex hardware and software set-
tings can be removed. Nevertheless, the usage of the software poses no difficulty on
usual commodity single-core or multicore machines or computing clusters, as long as
the compiler supports the MPI-2 standard [Message Passing Interface Forum 2003].
The software is publicly available from the following two websites:

— http://press3.mcs.anl.gov/scala-gauss/software/
— http://www.mcs.anl.gov/~jiechen/software.html

2. MATÉRN TREE CODE
The family of Matérn functions of order ν > 0 is defined as (see, e.g., Rasmussen and
Williams [2006])

φ(r) =
(
√

2νr)νKν(
√

2νr)

2ν−1Γ(ν)
,

where Kν is the modified Bessel function of the second kind of order ν and Γ is the
Gamma function. When the Matérn function is used as a radial basis kernel, the vari-

1http://en.wikipedia.org/wiki/InfiniBand
2http://mvapich.cse.ohio-state.edu/overview/mvapich2/
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able r denotes the scaled, elliptical distance between two points x and y in Rd:

r =

√√√√ d∑
i=1

r2
i

`2i
with ri = xi − yi, (1)

where the `i’s are scaling factors, one for each coordinate. We use the boldface letter
` to denote the vector of all `i’s. For convenience of presentation, we will write the
Matérn kernel by abuse of notation in different forms: φ(r), φ(x− y) or φ(x,y), which
will not cause confusion under a clear context.

Given a set of n points {xi ∈ Rd} and a length-n vector q, this software computes
the matrix-vector product s = Φq where the matrix Φ is defined based on the Matérn
kernel:

Φij = φ(xi − xj).

In certain applications, such as maximum likelihood estimation (MLE), the differenti-
ated kernel φ[k] ≡ ∂φ/∂`k is of interest in addition to φ (see Anitescu et al. [2012] for
the matrix-free technique of performing large-scale MLE that avoids factorizations).
In this case, the matrix-vector products Φ[k]q, where

Φ
[k]
ij = φ[k](xi − xj),

are additionally computed for the same q. The organization of the calculations with
the differentiated kernels is similar to that of φ; thus in what follows the discussions
with differentiated kernels are omitted except when necessary.

2.1. Mathematical Background
The tree code algorithm for computing Φq is based on a Taylor approximation of the
kernel with error estimates. The kernel φ(xi,xj) takes a pair of points, xi and xj , as
arguments. Because it is sometimes confusing when one distinguishes the two points
only by using the index, we slightly change the notation of the second argument from
xj to yj and write the matrix-vector product in a summation form with this change of
notation:

si =

n∑
j=1

qjφ(xi,yj), for i = 1, . . . , n. (2)

By convention, we call xi the target, yj the source, and qj the weight, in recognition
of the fact that each source contributes with a certain weight to the target. The kernel
admits a Taylor expansion around two distinct centers xc and yc:

φ(xc + ∆x,yc + ∆y) =

∞∑
‖j‖=0

∞∑
‖k‖=0

(
j + k

j

)
∂j+k
y φ(xc,yc)

(j + k)!
(−∆x)j(∆y)k. (3)

Here, the vectorial notation is standard in multivariate calculus, and ∂kyφ for any k
means the partial derivative of φ(x,y) with respect to y of order k. We denote by Ct a
cluster of target points with centroid xc and Cs a cluster of source points with centroid
yc, and for any xi ∈ Ct we define the partial sum

si(Cs) :=
∑

yj∈Cs

qjφ(xi,yj). (4)
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Using a pair of sufficiently large orders (p1, p2), one can approximate si(Cs) by trun-
cating the Taylor expansion as in

si(Cs) ≈
p1∑
‖j‖=0

p2∑
‖k‖=0

(
j + k

j

)
︸ ︷︷ ︸
binom. coef.

∂j+k
y φ(xc,yc)

(j + k)!︸ ︷︷ ︸
Taylor coef.

(xc − xi)
j︸ ︷︷ ︸

target momt.

 ∑
yj∈Cs

qj(yj − yc)
k


︸ ︷︷ ︸

weighted source momt.

. (5)

Here, we annotate the individual terms of (5) in the summand as binomial coefficients,
Taylor coefficients, target moments, and weighted source moments.

We write

Gk
ν ≡

∂kyφ(xc,yc)

k!
. (6)

These Taylor coefficients can be computed by recursing on k and ν. Because ν denotes
a given Matérn order, in the recursions we change the notation of ν to u. The detailed
derivation is given by Chen et al. [2012]. In summary, the recurrence is given by

Gk
u =

2νhu
‖k‖

[
d∑
i=1

ri
`2i
Gk−ei
u−1 −

d∑
i=1

1

`2i
Gk−2ei
u−1

]
, (7)

where

hu =



1

2(u− 1)
, u > 1

z(
√

2νr), u = 1

(
√

2νr)2u−2Γ(1− u)

22u−1Γ(u)
, 0 < u < 1

hu =


1

2νz(
√

2νr)
, u = 0

−u
ν
, u < 0,

z(R) =

{
−γ − log

(
R
2

)
, 0 < R < R0

1, R ≥ R0,
R0 = 2e−γ−1,

and γ ≈ 0.577216 is the Euler–Mascheroni constant. By convention, Gk
u is zero if any of

the components of k is negative. When k = 0, the initial condition is given by

G0
u =



(
√

2νr)uKu(
√

2νr)

2u−1Γ(u)
, u > 0

K0(
√

2νr)

z(
√

2νr)
, u = 0

(
√

2νr)−uK−u(
√

2νr)

2−u−1Γ(−u)
, u < 0.

(8)

In addition, when the Taylor coefficients for the differentiated kernels φ[i] are needed
to be computed, the following formula is readily applicable:

∂kyφ
[i](xc,yc)

k!
=

1

`i

[
(ki + 1)riG

k+ei
ν − kiGk

ν

]
.

The truncation of the Taylor expansion (3) incurs errors. Lacking an analytical
bound, we pursue a data analysis approach and fit hypothesized error formulas for
estimating the error. Denote by ‖ · ‖` the elliptical 2-norm based on the scaling factor `
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(cf. (1)). When the Taylor expansion is truncated at only one of the centers, say yc, we
define

δmax
p (ρ, τ) = max

‖xc−yc‖`≤τ
‖∆y‖`≤ρ

∣∣∣∣∣∣φ(xc,yc + ∆y)−
p∑

‖k‖=0

∂kyφ(xc,yc)

k!
(∆y)k

∣∣∣∣∣∣ .
Because of symmetry, this definition is equivalent to the one with truncation at xc. An
empirical error formula is

log10 δ
max
p (ρ, τ) = α1 + α2 log10 τ + α3 log10(ρ/τ), (9)

where α1, α2, and α3 are coefficients that may vary with the truncation order p. This
formula hypothesizes that in the log scale, the maximum error δmax

p (ρ, τ) scales lin-
early with the distance τ of two centers and with the ratio ρ/τ between the expansion
radius and the center distance. Further, the overall error when the Taylor expansion
is truncated at both centers, as defined in

δmax
p1,p2(ρt, ρs, τ) = max

‖xc−yc‖`≤τ
‖∆x‖`≤ρt
‖∆y‖`≤ρs

∣∣∣∣∣∣φ(xc + ∆x,yc + ∆y)−
p1∑
‖j‖=0

p2∑
‖k‖=0

∂j+k
y φ(xc,yc)

(j + k)!
(−∆x)j(∆y)k

∣∣∣∣∣∣ ,
is hypothesized to be the maximum of that of two single truncations:

δmax
p1,p2(ρt, ρs, τ) = max{δmax

p1 (ρt, τ + ρs), δ
max
p2 (ρs, τ + ρt)}. (10)

The rationale of these two hypotheses (9) and (10) is discussed in details by Chen
et al. [2012]. In robust software, one must verify them by fitting the coefficients α1, α2,
and α3 for p1 and p2 separately and quantifying the discrepancies in the fitting. If the
absolute differences between both sides of (9) and (10) are less than 1.0 for all fitting
samples, we conclude that these hypotheses are valid because the discrepancy between
the estimated error and the true error is upper bounded by one order of magnitude.

It is known that when τ exceeds a soft threshold (approximately 1.0 to 5.0), the fitted
formulas (9) and (10) largely overestimate the approximation error. From an algorith-
mic standpoint, this overestimation will affect the timing performance because poten-
tially good approximations between two faraway clusters are conservatively ignored,
but the software computes the correct results in any case.

2.2. Algorithmic Flow
The algorithm for the Matérn kernel follows a general tree code but entails several
modifications. We start from the tree generation as it forms the foundation of later
parallelization designs. The set of d-dimensional points is partitioned recursively to
form the hierarchical tree structure. In particular, each partitioning is a bisection,
meaning that a set X is separated in two balanced subsets Xl and Xr with 0 ≤ |Xl| −
|Xr| ≤ 1. The bisection is performed based on principal component analysis. Then, the
recursive bisection forms a full binary tree, where each node represents a cluster of
points, with the size of the clusters in the same level of the tree differing by at most
1. The root represents the whole set {xi}. See Figure 1. If n0 is the maximum size of a
leaf node, then the tree has h = dlog2(n/n0)e+ 1 levels and 2h− 1 = O(n/n0) nodes. For
the convenience of later descriptions, one can visualize that each leaf node contains
a target cluster Ct and each tree node contains a source cluster Cs. The concepts of
“node” and “cluster” are used interchangeably.

For any target xi in a certain Ct, we initialize the ith entry of the matrix-vector
product, si, with zero and perform a tree-walk starting at the root. For each node
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Fig. 1. Hierarchical partitioning of the point set and the full binary tree representation.

Cs being visited, we estimate the Taylor approximation error using (9) and (10). If the
estimated error is less than a prescribed threshold ε, we compute the partial sum si(Cs)
using the Taylor approximation (5) and accumulate it to si. Otherwise, the two children
of the node are visited. At the bottom of the recursion when a leaf node (still considered
a source cluster Cs) is visited, if the Taylor approximation does not yield an error less
than ε, we compute the partial sum si(Cs) directly according to the definition (4) and
accumulate it to si. Iterating through all the i’s, we compute the overall vector s.

3. PARALLEL PROCESSING
In a distributed-memory environment with MPI, the input point set and the resulting
tree hierarchy are distributed across MPI processes. The recursive bisection scheme
discussed in the preceding section induces a natural distribution for the data. In this
section, we discuss the details of parallel processing and the algorithmic aspects in-
curred.

3.1. Data Distribution
Based on the bisection scheme, the set of n points is evenly distributed among p pro-
cesses. Here, we require that p be a power of 2. In addition to the obvious reason that
this requirement conforms to the full binary tree structure, a further benefit is that
all the processes can be fully utilized in a parallel sorting (such as Batcher’s bitonic
sort [Batcher 1968]) in each bisection. We further restrict the number of points that
each process holds to no less than the maximum leaf size, that is, n/p ≥ n0. This is
equivalent to requiring that the depth of the tree be no less than the depth of the pro-
cess hierarchy. Figure 2 illustrates the “process level” where there are p tree nodes.
Each such node spans a “fan” (an abstraction of a binary subtree). At the bottom of
these “fans” are leaf nodes that we visualize as target clusters Ct as usual. Thus, each
process holds a partial tree, which consists of exactly one node on the “process level,” all
its ancestors, and the subtree rooted from this node. In this manner, the nodes above
the process level will have a duplicate copy among several processes. Each process will
also store the Taylor coefficients—the ones computed for a pair of nodes (Ct, Cs) when
Taylor expansion is performed—for all Ct it contains. These coefficients are stored in a
hash table that uses the pair (Ct, Cs) as the hashing key.

3.2. Load Balancing
Assume for the moment that a process P holds a target cluster Ct and that it wants
to compute the results si for all i ∈ Ct. Based on the above data distribution, the
computational pattern is that all the processes are looped over as partner processes.
For each partner process Pj , P first asks for Pj ’s tree. Then, P walks through the
obtained tree and determines at what source nodes Cs a Taylor expansion or a direct
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Fig. 2. Parallel distribution of points and tree. Shaded region represents part of the tree held by one process.

summation is used. Next, P asks for further data from Pj , some being weighted source
moments (when Taylor expansion is performed) and some being weights and points
(when direct summation is performed). As a side note, the weighted source moments
have to be computed by Pj first, before any possible P asks for them. After the further
data is obtained, P performs the summations and accumulates the results to si.

Clearly, if every process P computes the results si, i ∈ Ct, for all Ct it holds, the
load may be imbalanced. The imbalance comes from two factors: the number of Taylor
expansions and direct summations, and the communication cost for data transition.
Thus, associating a leaf node Ct to a unit task, where si for all i ∈ Ct are computed, we
design a load-balancing manager that instructs the task assignments for each process.
A direct consequence is that if a process P is assigned a task with Ct not held by P , P
must first ask for Ct from some other process.

Before we discuss the algorithm of the task manager, we note a slight complication.
When Ct is not held in P , P must also ask for the Taylor coefficients from the process
that stores Ct. Since Taylor coefficients are stored in hash tables, the transfer of items
is costly if the hash tables are not distributed. We resolve this problem by moving
the Taylor coefficients in batch to the processes that actually use them, after the task
assignment is made. This strategy causes a slight storage imbalance across processes;
but since the task manager is designed to minimize the mismatch between Ct and
P , the slight storage imbalance is generally not a problem. Additionally (as discussed
in more details in Section 4), the movement of the Taylor coefficients, together with
many other computations, are carried out as precomputations that are separate from
the main computation, whose performance is the major interest.

3.2.1. Model and Its Impractical Solution. The task assignment is a classic integer pro-
gram. Denote by an index i a unit task, which ranges from 1 to the number of target
nodes—the smallest power of 2 larger than or equal to n/n0. Denote by j the processes,
ranging from 1 to p. We assume that initially the target cluster associated to the task
i resides in process p(i). Next, define dij to be the penalty

dij =

{
λ, if j 6= p(i)

0, otherwise,

where λ > 0 is a tunable penalty parameter, xij to be the indicator variable that indi-
cates whether task i is assigned to process j, and ci to be the cost of completing task i.
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Then, the task assignment problem is

min z

s.t.
∑
i

cixij +
∑
i

dijxij ≤ z, ∀ j (11)∑
j

xij = 1, ∀ i

xij ∈ {0, 1}, ∀ i,
where z is just an auxiliary variable for rewriting the minimax nature of the problem
in the standard integer programming form. The first summation term of (11) is the
total cost for completing the tasks assigned to process j, whereas the second term is
the penalty of assigning foreign tasks to j. We want to minimize the sum of cost and
penalty across all processes.

Unfortunately, the total number of variables is so large—not smaller than pn/n0

(e.g., p = 128, n = 10242, n0 = 64)— that this integer program is unlikely to be solved
in a reasonable time with the most efficient optimization solvers currently available,
such as CPLEX.3 Further research might be carried out to design a more sophisticated
optimization scheme, but we adopt a simple heuristic that works well in practice.

3.2.2. Heuristic Solution. Assume for the moment that the penalty term is not in-
cluded. The objective can be adjusted to that of minimizing the variation of

∑
i cixij ,

j = 1, . . . , p, away from the constant mean
∑
i ci/p. One way of achieving this approx-

imately, is to first sort the tasks initially held in each process j in decreasing order
and assign as many tasks as possible to j, as long as the accumulated cost has not
exceeded

∑
i ci/p. This assignment does not incur any penalty, and all processes can

compute the assignment in parallel without any communication. After this pass, a set
A of processes is assigned with all its tasks and still has not reached a total of

∑
i ci/p

cost; whereas the remaining set B of processes can be assigned with only part of its
tasks and the other tasks have to be moved out.

In the next pass the tasks are moved from the set B of processes to the set A. The
task information, such as the cost ci, has to be gathered by every process, each per-
forming duplicate assignment calculations concurrently. The algorithm of reassigning
these tasks is greedy. We maintain a max-heap of all the processes, where the heap
keys are the balance of a process, defined as the mean

∑
i ci/p minus the total cost of

tasks it has accumulated so far. We then iterate all the tasks in the queue (sorted in
the decreasing order of their costs), assign each task to the process at the root of the
heap, and adjust the heap.

This algorithm works well in practice because the number of tasks in the second
phase is not too large and these tasks have relatively small costs. (An extreme situation
is that some particular task(s) has a cost that already exceeds the mean.) These tasks,
since they stand in the front of the sorted order in the first pass, are assigned to the
process immediately; the rest of the tasks this process holds enter the second pass. In
this case, load balancing is impossible to achieve. In Figure 3, we show that a data
structure LoadStat is returned after the load-balancing manager computes the task
assignment. This data structure is used to inspect the load-balancing statistics.

3.2.3. Simulation of Costs. The cost for a task is estimated based on the following for-
mula:

ci = nexpand(i) · [cexpand,comp + cexpand,comm] + ndirect(i) · [cdirect,comp + cdirect,comm],

3http://en.wikipedia.org/wiki/CPLEX
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where nexpand(i) and ndirect(i) are the number of node pairs (fixing the target node
i) for Taylor expansions and for direction summations, respectively; cexpand,comp and
cexpand,comm are the computation and communication cost for one Taylor expan-
sion, respectively; and similarly for cdirect,comp and cdirect,comm. The computation costs,
cexpand,comp and cdirect,comp, can be straightforwardly simulated. The communication
costs, cexpand,comm and cdirect,comm, on the other hand, may fluctuate significantly depend-
ing on many factors, including the machine architecture and the MPI communication
protocol. For example, in the next subsection, we explain our use of the passive one-
sided communication protocol. A good simulation of the communication cost happens
only when each process uses a separate core for thread communications. In light of
this complication in performance tuning, we leave a switch in the code that can be set
by the user to indicate whether communication costs are simulated. See the argument
est comm in the interface routine Planning in Figure 3 and Section 4.

3.3. Passive One-Sided Communications
Augmenting Section 2.2 by parallel processing, we can (incompletely) summarize the
computational flow in the following, omitting the precomputations and treating a pro-
cess executing the flow as the first person:

1: Compute weighted source moments for all the source nodes Cs I have.
2: for every set of tasks involving target nodes {Ct} held in the same process Pi do
3: If I am not Pi, get Pi’s tree and the points belonging to the target nodes.
4: for every partner process Pj do
5: If I am not Pj , get Pj ’s tree.
6: For each target node Ct, walk Pj ’s tree, mark the places that require

additional data (weighted source moments, points, and weights) from Pj .
7: If I am not Pj , get the required data from Pj .
8: Using the obtained data, compute Taylor expansions and direct summations

to accumulate si for all i ∈ Ct and all target nodes Ct.
9: end for

10: If I am not Pi, write back the computing results to Pi.
11: end for
As is a usual practice, processes Pi and Pj in the two for-loops are permuted to avoid
potential congested data requests to the same process.

The data movement occurs irregularly in the above flow. A reason is that the com-
putations with respect to each Pj in the inner loop have different costs. Thus, it is
unwise to place MPI send and receive calls (even using the nonblocking versions) for
communications in the nested for loops.

This work-flow pattern is best handled by using passive one-sided communications
(also known as remote memory access), introduced in the MPI-2 standard. In one-sided
communications, the MPI calls (e.g., MPI Put and MPI Get) need not be matched be-
tween the sending and the receiving parties. Each process opens a memory window
containing data that can be accessed by other processes in a manner similar to di-
rect memory addressing. In the active mode,4 all the processes are explicitly synchro-
nized by using a pair of fences within which a process can remotely access another
one’s memory window, or part of the processes are synchronized by the post/start/com-
plete/wait mechanism. In fact, the active mode is not truly one-sided to a program-
mer’s eyes because explicit synchronization calls still need to be placed. Putting these

4We avoid using the term “target” in the standard MPI terminology (e.g., “active target synchronization” and
“target process”) and reserve the term for the explanation of the tree code (e.g., “target node” and “target
cluster”).
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synchronization codes anywhere will cause idling of processes finishing the previous
computations faster.

The use of the one-sided communications in our program is the passive mode, where
no explicit synchronization calls need to be made. When a process wants to access
the memory window of another one, it issues a lock before accessing it and releases
the lock on completion. The synchronization is done implicitly by the MPI library. A
shortcoming of the passive mode is that its best performance achievable by current
MPI implementations requires a spare core for handling the thread communications
for each process.

4. INTERFACE
We implemented the details discussed above in a C++ class TreeCodeMatern3D, which
specializes the R3 case. The tree code algorithm, in principle, works for all practical
dimensions, but templating the class over the dimension significantly complicates the
coding in many fine details.

The interface of TreeCodeMatern3D consists of two sets of public functions: the com-
putational routines and the utility routines. Our design principle is that the compu-
tational routines are as neat as possible whereas the utility routines are rich in func-
tionality for users to investigate the various performance statistics.

Whereas one wishes a single function call for the conceptually simple matrix-vector
multiplication, it is unlikely because of the complications of the algorithm. For ex-
ample, precomputations are needed to separate out from the main calculations when
multiple vectors q exist. There are more complications as will soon be seen. Thus, we
design the computational interface that contains the following routines that must be
called in order.

— TreeCodeMatern3D: The constructor. It takes as input a distributed array of points
and the number of points in this process. The set of points cannot be changed once
the class is instantiated.

— Planning: The planning routine. It performs the precomputations given the various
parameters, including those associated with the Matérn kernel (ν and `), those re-
lated to the tree code (p1, p2, ε and n0), one that indicates whether the computation
includes the differentiated kernels, and one that indicates whether to estimate com-
munication cost in the load-balancing manager. The planning routine performs many
calculations: a binomial table is constructed; the error formulas (9) and (10) are fit-
ted; the tree hierarchy is built with points redistributed; Taylor coefficients are com-
puted; the summation cost is simulated; the load balancing manager is invoked; the
Taylor coefficients associated with the target nodes are moved to the computing pro-
cess and stored there; and the reordering information of the points are recorded. The
routine returns the indication of whether the fitting of error formulas is successful.
This routine can be re-called every time the parameters are changed.

— Evaluation: The evaluation routine. This routine performs the actual matrix-vector
multiplication. It takes the vector q as input and s as output, and it can be called as
many times as desired for multiple q’s.

— CleanupBeforeMPIFinialize. This routine frees the allocated data structures for sev-
eral derived MPI datatypes used for data movements. A lack of destructors in the
MPI implementation requires such a non-object-oriented-friendly workaround that
is otherwise unnecessary.

A caveat in the Evaluation routine is that the points are redistributed in the plan-
ning phase; thus the ordering of the entries of q (and s) might mismatch that of the
points after the tree is built. The software could of course implicitly reorder q and s,
but making the reordering explicit to the user is also justified. Consider, for example, a
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Krylov iteration with respect to the matrix Φ. Because the vectors are repeatedly mul-
tiplied to Φ and the ordering of the vector entries during the iterations is not relevant,
none of the intermediate vectors needs to maintain the correct order for their entries.
In other words, reordering needs to be done only before and after the Krylov iteration.
Because of this flexibility, we introduce the following two reordering routines.

— Reorder_InputToTree: Redistribute the entries (of the input q) to match the ordering
of the points after the tree is built.

— Reorder_TreeToInput: Redistribute the entries (of the computed s) to match the orig-
inal ordering of the input points.

Then, the Evaluation routine asks the user to specify whether the redistribution is
performed internally or externally. If externally, the user is responsible calling the
above reordering routines to ensure the correctness of the computation.

The utility interface contains the following routines.

— GetNumPtsThisProc: Return the number of points a process has after the tree is built.
This can be used for allocating memory for input/output vectors.

— GetPlanningTimeStat: Return the timing statistics of the planning phase.
— GetEvaluationTimeStat: Return the timing statistics of the evaluation phase.
— GetSummationStat: Return the statistics of the number of direct summations and the

number of Taylor approximations. This can be used to verify the O(n log n) computa-
tional complexity as an alternative criterion to wall-clock timing.

— GetLoadStat: Return the computational load for each process. This can be used to
inspect the load balancing as an alternative criterion to wall-clock timing.

Figure 3 demonstrates a barebone example for using the TreeCodeMatern3D inter-
face. The dummy for-loops show the recurrent uses of the Planning routine and the
Evaluation routine when parameters and the input vector change, respectively.

To verify the correctness of the tree code calculation, we implemented a separate
class DirectMatern3D that computes the matrix-vector product in the straightforward
O(n2) manner. The interface of DirectMatern3D is similar to that of TreeCodeMatern3D
except that no planning is carried out and the points are not redistributed. The inter-
face contains a routine RelativeErr that checks the relative difference between two
vectors.

5. DATA STRUCTURE FOR MULTIDIMENSIONAL PARTIAL DATA
A straightforward data structure for storing a set of Taylor coefficients {Gk

ν} is a d-
dimensional array A, as in A[k1][k2] · · · [kd] = Gk

ν . Since the indices have a sum that is
bounded by 0 ≤ k1 + k2 + · · · + kd ≤ m, where m = p1 + p2 with p1 and p2 being the
truncation orders, such an array A has a size (m + 1)d, of which only

(
m+d
d

)
of them

are used. In other words, asymptotically the usage rate is only 1/d!. Considering that
there is a large number of such sets, the storage is significantly wasted.

A more economic storage is a one-dimensional array with exactly
(
m+d
d

)
entries. We

thus need an efficient indexing method to position an item Gk
ν with a random k. In

other words, we seek a one-to-one mapping f : (k1, k2, . . . , kd) 7→ i that maps a d-tuple
index to a linear index. The mapping in fact serves as an ordering of the d-element
integer vectors {k}, where 0 ≤ ‖k‖ ≤ m.

A descriptive definition of the ordering is as follows. We first order the tuples in
batch according to their sums; that is, (k1, k2, . . . , kd) is less than (k′1, k

′
2, . . . , k

′
d) if k1 +

k2 + · · · + kd < k′1 + k′2 + · · · + k′d. Then, the tuples with the same sum are ordered
lexicographically; that is, (k1, k2, . . . , kd) is less than (k′1, k

′
2, . . . , k

′
d) if ki ≤ k′i for all i.

Algorithmically, the following pseudocode outputs all the d-tuples in this order.
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1 long n; // Total number of points
2 Point3D *X; // An array of points (distributed)
3 double nu; // Matern order
4 double ell[3]; // Scaling factors
5 int p[2]; // Expansion orders
6 double epsilon; // Error threshold
7 long n0; // Maximum number of points a leaf holds
8 bool kernel[3]; // Compute differentiated kernel wrt the i-th parameter?
9 bool est_comm; // Estimate communication cost when planning?

10 double *q; // Input vector (distributed)
11 double *s[4]; // Output vectors (distributed).
12 // s[0]: vector for original kernel;
13 // s[1] to s[3]: vectors for differentiated kernels
14
15 // Set n, X here...
16
17 TreeCodeMatern3D TreeCode(n, X, MPI_COMM_WORLD);
18
19 for (int i = 0; i < 10; i++) { // a dummy loop
20
21 // Set or change nu, ell, p, epsilon, n0, kernel, est_comm here...
22
23 if (TreeCode.Planning(nu,ell,p,epsilon,n0,kernel,est_comm) == false) {
24 std::cout << "Planning failed!";
25 exit(1);
26 }
27 long *sum_stat = NULL;
28 int len = TreeCode.GetSummationStat(&sum_stat);
29 LoadStat load = TreeCode.GetLoadStat();
30 TimeStat t = TreeCode.GetPlanningTimeStat();
31
32 for (int j = 0; j < 10; j++) { // a dummy loop
33
34 // Set or change q here; allocate the right length for s...
35 // If s is not reordered, length is TreeCode.GetNumPtsThisProc()
36
37 bool q_reorder = true;
38 bool s_reorder = true;
39 TreeCode.Evaluation(q, q_reorder, s, s_reorder);
40 t = TreeCode.GetEvaluationTimeStat();
41
42 // Or, equivalently...
43 // TreeCode.Reorder_InputToTree(&q);
44 // TreeCode.Evaluation(q, false, s, false);
45 // for (int k = 0; k < 4; k++) {
46 // TreeCode.Reorder_TreeToInput(&s[i]);
47 // }
48
49 }
50
51 }
52
53 TreeCode.CleanupBeforeMPIFinialize();

Fig. 3. Example use of the TreeCodeMatern3D class.
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1: for s← 0 to m do
2: for k1 ← 0 to s do
3: for k2 ← 0 to s− k1 do
4: · · ·
5: for kd−1 ← 0 to s− k1 − · · · − kd−2 do
6: Print (k1, k2, . . . , kd−1, s− k1 − k2 − · · · − kd−1)
7: end for
8: · · ·
9: end for

10: end for
11: end for

In the appendix, we show that an equivalent mathematical definition of the mapping
f is

f(k1, k2, . . . , kd) =

(
t+ d

d

)
−
d−2∑
j=1

(
t− (k1 + · · ·+ kj) + d− j − 1

d− j

)
− kd − 1,

where t = k1 + k2 + · · ·+ kd. Here, we enforce that f(0, 0, . . . , 0) = 0.
Efficient ways to evaluate the mapping exist. For example, when d = 3, we have

f(k1, k2, k3) =

(
t+ 3

3

)
−
(
t− k1 + 1

2

)
− k3 − 1.

In computer implementation, we hard-code two arrays b2 and b3, with elements b2[j] =(
j
2

)
, b3[j] =

(
j
3

)
. Then,

1: k′3 = k3 + 1;
2: t′ = k2 + k′3;
3: t′′ = t′ + k1 + 2;
4: i = b3[t′′]− b2[t′]− k′3.

This calculation requires in total six adds/subtracts and two array-lookups.
Figure 4 shows the class PartialArray3D that implements such a data structure. It

is a templated class with identifier T. For our usage T is double. The value m cannot
exceed some predefined maximum MAX_M. The operations Set, AddTo, and Get with clear
literal meanings all come with two interfaces: one uses the 3-tuple index (k1, k2, k3)
to address an element, and the other uses the linear index i. The conversion from a
3-tuple index to a linear index is performed in Idx3to1. For convenience, the class
overloads the square bracket operator so that the operations with respect to a single
element of the array (such as Set, AddTo and Get), using the linear index, can be written
in a simpler fashion. The class also overloads the operators such as =, + and += to
perform operations for all the elements in the array.

The two indexing schemes have separate uses. The 3-tuple indexing is used when
the array elements are not accessed consecutively. For example, in the recurrence (7)
for computing Taylor coefficients, the (k1, k2, k3) element of an array is computed by
accessing the (k1 − 1, k2, k3), (k1 − 2, k2, k3), (k1, k2 − 1, k3), (k1, k2 − 2, k3), (k1, k2, k3 −
1), (k1, k2, k3 − 2) elements of another array. In this case, the interfaces with 3-tuple
indexing are convenient. On the other hand, in some situations (e.g., performing a
summation with respect to k for all ‖k‖ ≤ m) the array elements can be accessed
consecutively. In this case, using the interfaces with a 3-tuple index incurs overheads
because of the index conversion; hence, linear indexing is more favorable.
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1 #define MAX_M 50
2 static const int b2[52] = {0, 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66,

78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325,
351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780,
820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225, 1275};

3 static const int b3[54] = { /* omitting contents here */ };
4
5 template <class T> class PartialArray3D {
6
7 public:
8
9 // Constructors and destructor

10 PartialArray3D();
11 PartialArray3D(const PartialArray3D<T>& x);
12 PartialArray3D(int m_);
13 ~PartialArray3D();
14
15 // Overloaded operators
16 T& operator[](int i);
17 PartialArray3D<T>& operator = (const PartialArray3D<T>& x);
18 PartialArray3D<T>& operator = (const T& x);
19 PartialArray3D<T>& operator += (const PartialArray3D<T>& x);
20 PartialArray3D<T>& operator += (const T& x);
21 PartialArray3D<T> operator + (const PartialArray3D<T>& x) const;
22
23 // Set the i-th element with x
24 void Set(int k1, int k2, int k3, const T& x);
25 void Set(int i, const T& x); // Same as using the [] operator
26
27 // Add to the i-th element with x
28 void AddTo(int k1, int k2, int k3, const T& x);
29 void AddTo(int i, const T& x); // Same as using the [] operator
30
31 // Get the i-th element
32 T& Get(int k1, int k2, int k3);
33 T& Get(int i); // Same as using the [] operator
34
35 // Mapping from 3-tuple index to linear index
36 int Idx3to1(int k1, int k2, int k3) {
37 int k3p = k3 + 1;
38 int tp = k2 + k3p;
39 return b3[tp + k1 + 2] - b2[tp] - k3p;
40 }
41
42 // More operations
43
44 private:
45
46 T *B; // The array
47 int m; // k1+k2+k3 <= m
48 int len; // Length of B (should be (m+3)*(m+2)*(m+1)/6)
49
50 };

Fig. 4. Definition of the PartialArray3D class and implementation of the index mapping.
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6. EXPERIMENTAL EVALUATION
Partial experimental results regarding the correctness of the program (verified against
straightforward summation) and the serial O(n log n) complexity of the evaluation cost
have been shown by Chen et al. [2012]. This section focuses on the effectiveness of the
parallelization techniques discussed in Section 3. All the experiments were conducted
on the Blues cluster5 of the Laboratory Computing Resource Center at Argonne Na-
tional Laboratory. The cluster contains 310 compute nodes, each of which is equipped
with 16 Intel Sandy Bridge processors (with hyperthreading disabled) and 64GB of
RAM. The nodes are connected through QLogic QDR InfiniBand. The MPI compiler
we used was MVAPICH2 built with ICC. All the experimental results were retrieved
from the utility interface described in Section 4.

The experimental setup is the following. We ran experiments with a series number
of processes and problem sizes, where we always launched 8 MPI processes on each
compute node. Four point set configurations were experimented with: (i) uniform dis-
tribution in the unit cube, (ii) points on a sphere of unit radius with uniformly random
azimuthal angle and polar angle, (iii) 30◦N to 60◦N segment of this sphere, and (iv) a
mixture of four Gaussians with different centers, weights, and scales. Figure 5 shows
an illustration of the Gaussian mixture. All these configurations are provided in the
test driver accompanied with the released code. Parameters were ν = 1.5, ` = [4, 14, 3],
p1 = 4, p2 = 6, ε = 10−7, and n0 = 64. The switch est comm was disabled. Experimen-
tal results are reported and compared for the cube and the Gaussian mixture cases,
wherein the former produces the most homogeneous points set and the latter hetero-
geneous.
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Fig. 5. illustration of the Gaussian mixture.

To demonstrate the effectiveness of the load-balancing manager, we list in Table I
the maximum workload across all processes with respect to the average. The perfect
case is 100%. Accompanied with it is the cost of the heaviest task normalized by the
average process workload, listed inside the parentheses. When the task costs are even,
this number should be tiny; a large number indicates unevenness. One sees that in
the cube case, task costs are even and load balance is perfect. In the Gaussian mixture
case, however, some tasks have exceedingly high cost (see the last column of table). In
this case, perfect load balance is impossible to achieve, but our task manager gives the
best achievable load balance.

5http://www.lcrc.anl.gov/
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Table I. Maximum workload normalized by the average workload. Inside the
parentheses is the cost of the heaviest task normalized by the average work-
load. All numbers are rounded to 1%. The top table is for cube and the bottom
one for Gaussian mixture. The cases marked by “NA” indicate that the required
memory has exceeded the machine capacity.

n (×10242) 16 64 256 1024
1 100% (0%) 100% (1%) 101% (2%) 102% (9%)
4 100% (0%) 100% (0%) 100% (1%) 101% (2%)
16 100% (0%) 100% (0%) 100% (0%) 100% (1%)
64 NA 100% (0%) 100% (0%) 100% (0%)

n (×10242) 16 64 256 1024
1 100% (4%) 100% (15%) 104% (58%) 235% (235%)
4 100% (2%) 100% (12%) 100% (48%) 193% (193%)
16 NA 100% (10%) 100% (41%) 163% (163%)
64 NA NA 100% (22%) 100% (90%)

For timing comparison, Figure 6 plots the strong (solid) and weak (dashed) scalings
of the evaluation time together with parallel efficiencies for the smallest problem size
(the planning time is typically in several seconds to a few minutes and is unimportant).
One sees a good scaling for the cube case and part of the Gaussian mixture case. This
result is a consequence of the combined effect of the near-linear complexity of the
tree code and the balance of the workload among processes. The part of the Gaussian
mixture case that deviates from the perfect strong scaling trend is not surprising. It is
caused by the imperfect load balance (see the last column of Table I), which in turn is
a result of highly inhomogeneous distribution of the point set.
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Fig. 6. Scalings of the evaluation time. Solid line: strong scaling; dashed line: weak scaling. Value under
the bottom curve: parallel efficiency with respect to strong scaling.

As an application, we used the tree code to build a Gaussian sampling code that gen-
erates random Gaussian process data. The traditional method for generating Gaussian
data is via a Cholesky factorization of the covariance matrix Φ; however, the cubic time
cost and quadratic storage cost make the method extremely difficult to scale beyond
O(105) data points, even with the use of a supercomputer and the most efficient pack-
ages for large-scale linear algebra computations, such as ScaLAPACK [Blackford et al.
1997]. Thus, we have proposed a matrix-free sampling method [Chen et al. 2011] that
is based on matrix-vector multiplications and avoids matrix factorizations. Here, we
demonstrate the use of the tree code to sample a three-dimensional Matérn process
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with smoothness ν = 1.0 and scales ` = [1, 1, 1]. We set ε = 1e-5 and, to prevent the
possible loss of positive definiteness, added a nugget 1e-5 to the kernel. Figure 7 shows
several slices of a computed random sample in the unit cube on a 100× 100× 100 grid.
Clearly, the tree code is designed not only for regularly gridded data; however, for vi-
sualization purpose we give here a regular grid result. Readers can view an animation
of the sample in http://press3.mcs.anl.gov/scala-gauss/gallery/.

(a) x = 0.00 (b) x = 0.33 (c) x = 0.67 (d) x = 1.00

(e) y = 0.00 (f) y = 0.33 (g) y = 0.67 (h) y = 1.00

(i) z = 0.00 (j) z = 0.33 (k) z = 0.67 (l) z = 1.00 

 

−0.49152 3.407
(m) color map

Fig. 7. Matérn Gaussian sample in the unit cube. ν = 1.0, ` = [1, 1, 1], nugget = 1e-5.

7. CONCLUSIONS
We have described the design and parallel implementation of a recently proposed
Matérn tree code for computing matrix-vector products. The parallelization with a
load-balancing design and MPI passive one-sided communications achieves good work



18 J. Chen et al.

balance and scaling. The software is designed with an interface focusing on flexibil-
ity and functionality expressiveness. It is intended to be used as a library on top of
which statistical application codes are built, such as sampling, as demonstrated in the
preceding section.

APPENDIX
LEMMA A.1. The integer equation

k1 + k2 + · · ·+ kd = t, ∀ ki ≥ 0

has
(
t+d−1
d−1

)
solutions.

PROOF. The number of solutions is equivalent to the number of combinations for
using d− 1 bars to separate a row of t oranges.

LEMMA A.2. The integer equation
k1 + k2 + · · ·+ kd ≤ t, ∀ ki ≥ 0

has
(
t+d
d

)
solutions.

PROOF. The number of solutions is equivalent to the number of combinations for
using d bars to separate a row of t oranges.

LEMMA A.3. The integer equation
k1 + k2 + · · ·+ kd = t, ∀ ki ≥ 0, k1 < s

has
(
t+d−1
d−1

)
−
(
t−s+d−1
d−1

)
solutions.

PROOF. The number of solutions for the integer equation

k1 + k2 + · · ·+ kd = t, ∀ ki ≥ 0, k1 ≥ s

is
(
t−s+d−1
d−1

)
, immediately following Lemma A.2. Without the constraint k1 ≥ s, the

number of solutions is
(
t+d−1
d−1

)
, according to Lemma A.1.

PROPOSITION A.4. The position of the d-tuple (k1, k2, . . . , kd) in the output of the
d-level for-loop in Section 5 is(

t+ d

d

)
−
d−2∑
j=1

(
t− (k1 + · · ·+ kj) + d− j − 1

d− j

)
− kd − 1, (12)

where k1 + · · ·+ kd = t. Here, we consider that the position of (0, 0, . . . , 0) is 0.

PROOF. According to Lemma A.2, the number of d-tuples (k′1, . . . , k
′
d) for which k′1 +

· · ·+ k′d < t is
(
t−1+d
d

)
. Next, the number of tuples for which k′1 + · · ·+ k′d = t but k′1 < k1

is
(
t+d−1
d−1

)
−
(
t−k1+d−1

d−1

)
, according to Lemma A.3. Iteratively, the number of tuples for

which k′1 + · · ·+k′d = t, k′1 = k1, . . . , k′d′−1 = kd′−1 and k′d′ < kd′ is
(t−(k1+···+kd′−1)+d−d′

d−d′
)
−(

t−(k1+···+kd′ )+d−d
′

d−d′
)
. Hence, the number of tuples before (k1, · · · , kd−1, kd) is(

t− 1 + d

d

)
+

d−1∑
d′=1

[(
t− (k1 + · · ·+ kd′−1) + d− d′

d− d′

)
−
(
t− (k1 + · · ·+ kd′) + d− d′

d− d′

)]
.

Combining every two terms of the above expression when the summation is expanded
(similar to telescoping except that the telescoping terms do not cancel), we reach the
expression (12).
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